
AUTOMATION IN THE HLA
FOM DEVELOPMENT

PROCESS

Mr. Robert Lutz
Johns Hopkins University/Applied

Physics Lab
Laurel, MD

Mr. Michael Hooks
TASC

Arlington, VA

Mr. Ken Hunt
AEgis Research, Inc.

Huntsville, AL

KEYWORDS
Automation, Process, Tools, OMT, FOM, SOM, DIF

ABSTRACT
A high-level process model has been defined and
documented by the HLA program to characterize the
sequence of activities recommended to develop and
execute HLA federations. Throughout the
description of this process model, the potential
utility of automated software tools is frequently
highlighted. The purpose of this paper is to
provide a more detailed investigation as to how
automated tools may facilitate the process of
developing HLA Federation Object Models
(FOMs). The paper will begin with a discussion of
the HLA FOM development process, and what key
capabilities automated tools may provide in this
process. Then, an overview of two existing proof-
of-principle FOM development toolsets will be
provided, including the design of the toolsets and
the major features they provide. Finally, the paper
will be summarized by describing how these proof-
of-principle toolsets may be leveraged to promote
and facilitate the development of more complete
automated toolsets to support federation
development.

THE HLA FEDEP MODEL
The development of the Department of Defense
(DoD) High Level Architecture (HLA) was initiated
in response to the DoD Modeling and Simulation
(M&S) Master Plan, which calls for a DoD-wide
common technical framework which will apply to
the full range of potential M&S applications. The
objective of the HLA is to facilitate interoperability
among simulations and promote reuse of
simulations and their components.

The core of the HLA concept is the federation. A
federation is a named set of interacting simulations,
a common FOM, and supporting runtime
infrastructure software, that are used as a whole to
achieve some specific objective. The HLA baseline
definition has been developed via a set of prototype
federations (protofederations), which implemented a
diverse set of applications using the initial HLA
specification. The experiences of these prototypes
have been used to evolve the specification to
establish the HLA baseline. Beyond their role as a
technical testbed, these HLA protofederations have
also been a valuable resource in understanding the
process of developing and executing HLA
federations. Throughout the HLA prototyping
phase, the HLA Object Model Template Working
Group (OMTWG) has provided the primary forum
for sharing federation development experiences
among the protofederations, and for building a
baseline process model specification based on the
projection of the collective experiences of the
protofederations toward future HLA applications.

A graphical representation of the HLA Federation
Development and Execution Process (FEDEP)
Model is provided in Figure-1. An overview of the
FEDEP Model is provided in a separate paper (“A
Process View for DIS++”, 96-15-007), with a more
detailed explanation of the content and relationships
between the various subprocesses available through
the online HLA Technical Library under the title
“HLA Federation Development and Execution
Process Model”.

Federation Object Model

Library of
SOMs

HLA FOMConceptual
Analysis

Library
of FOMs

Federation
Execution
Sponsor

Objectives

Scenario
Development

Management
Requirements

Common Fed Functionality
Federation

Test

Execution
Environment

RTI Initialization Data

Federation
Execution Results

Objects,
Attributes,

 Interactions

Determine
suitability of

Develop

Identifies

Guides

Defines

Drives

Record

Feeds

Provide
s
input to

Derives

Inputs to

Provides
input to

Provides
input to

Provides
input to

Feedback

Defines/Refines

Drives

Protocol
Catalog

Federation
Design

Provides
input to

Generates

FRED

X
X

X
X

X
X
XX

Scenario Instances
-- Where
-- Who
-- Details

Feeds
Fed Commonality

Fed A
Fed B

X Y Z

Scenario Data

Object Model

ED

Fed Development Products

Other
Resources

Modeling and Simulation Resource Repository

Other Sources

CMMS

Figure-1. HLA FEDEP Model

The development of the initial HLA federations
was, by necessity, a highly manual process due to
the general absence of automated tools to support
the HLA prototyping phase. Although this was
considered temporarily acceptable due to the limited
nature of the experimentation, several of the
“lessons learned” from this experimentation
expressed concern about the scaleability of the
overall federation development process to large
applications (eg., STOW). In order to address these
concerns, new emphasis has recently been given to
the need to automate certain aspects of federation
development. During construction of the FEDEP
Model, several opportunities for introducing
automation into the federation development process
were both identified and documented. A notional
subset of the full range of HLA tool requirements
is provided in Table-1.

In order to begin to address these longer-term needs
for automation, the Defense Modeling and
Simulation Office (DMSO) has recently initiated
two proof-of-principle efforts to develop supporting
toolsets for federation construction. The initial
focus of these toolsets are on support for FOM
development, which was found by the HLA
protofederations to be particularly labor intensive to
accomplish manually. The decision to build two
different versions of a FOM Development Toolset
(FDT) was based on a desire to:

• demonstrate how different implementation
strategies can be utilized to build a common,
core set of required functionalities,

• stimulate creativity in defining supplemental
functionalities that may be appropriate in
particular communities-of-use, and

• demonstrate the ability to exchange FOM data
among different FDTs via a common Data
Interchange Format (DIF), based on the
information requirements described in the HLA
Object Model Template (OMT).

TOOL REQUIREMENT
CMMS Tool Access authoritative DoD meta-models of real world behavior and define

the required subset of these models required for achieving the scope
defined by the federation's Objectives Statement.

Scenario Development Tool Accept definition of mission space from CMMS Tool. Allow scenario
developer to create scenario by deploying instances of objects from the
mission space, enforcing rules defined by CMMS.

Exercise Planning Tool Accept scenario from Scenario Development Tool. Accept FOM from FOM
Development Tool. Allow the user to map scenario elements to FOM objects,
and instances of FOM objects to specific federates.

FOM Development Tool Access MSRR libraries of FOMs and SOMs. Aid federation developers
in building FOM. Perform consistency checking. Output RTI Initialization
Data (RID) for federation execution.

Federation Controller Instantiate the federation. Provide controls for starting, pausing, and
stopping the federation.

Scenario Monitor Provide visualization of scenario during execution.

Post-Processing Tool Read runtime data logged by federation. Perform data reduction and
calculation of MOE/MOP metrics.

Table-1. HLA Tool Requirements

The organizations chosen to develop the proof-of-
principle FDTs were Aegis Research, Inc. of
Huntsville, AL and TASC of Arlington, VA. The
next two sections summarizes both the design and
the major features of both of these toolset
development efforts.

TASC FDT
HLA FOMs and Simulation Object Models
(SOMs) are two of the key factors in determining
simulation interoperability. These object models
define the Federation’s or a particular simulation’s
standards for class structure, class inheritance
hierarchy, simulation interactions, object
relationships, and programming data types. Using
one of the most prevalent FOM/SOM specification
tools in the HLA prototyping phase, MS Excel
spreadsheets, to fully specify all the elements in the
FOM or SOM has proven to be labor intensive and
problematic. A spreadsheet does not adequately
support either object-oriented design methodologies
or the CASE tool change propagation necessary to
build an internally consistent object model.
Automated tools are clearly required to support the
wide range of users and their diverse needs and
requirements for creation and maintenance of HLA
FOMs and SOMs.

Design
TASC’s technical approach to the FDT is based on
the following key design goals:

 Common API : Build an extensible architecture
with a common Application Programmer Interface
(API). The common API allows our own
developers, as well as other tool vendors, to
augment the FDT functionality and change sections
of the system’s implementation without affecting
the end users’ interface. This design discipline helps
protect tool investment.

 Platform Independent GUI : Develop a Graphical
User Interface (GUI) that is architecture neutral. The
GUI implementation should be independent of the
host machine and operating system. This capability
provides users with the flexibility to access the
FDT from a either a MAC, PC, or any Unix
platform using a GUI with a common “look and
feel”.

 OMT DIF Compatibility : The FDT should
interoperate with the Object Model Template

(OMT) Data Interchange Format (DIF), a standard
file exchange format for both FOMs and SOMs.

 Database Independence : The users’ local object
model repository should not depend on a specific
COTS database. The FDT should use an API to the
database, rather than services that are restricted to a
specific database. Users should not be required to
purchase machines and database products to use the
FDT. The FDT should accomodate the users’
existing resources as much as possible.

 Distributed Access : The FDT architecture should
support multi-user distributed access. The FDT
should be available over the network to multiple
users on different platforms for viewing and
modification. This capability is necessary for
FOMs and SOMs that require a coordinated
development effort from multiple individuals
geographically separated.

 Configuration Management : FOMs and SOMs
should be configuration managed. This level of
accountability is required because of the FOM’s
role in determining simulation interoperability.

Based on these design goals, TASC has chosen to
integrate two emerging object technologies,
CORBA and Java, into the FDT architecture.
CORBA is an Object Management Group (OMG)
specification that defines a set of services and
interfaces that compliant ORB vendors must
provide. The vendors’ implementation of the
CORBA standard provides the Interface Definition
Language (IDL), client and server libraries, meta-
data repository, and run-time support for developing
distributed applications. Using Iona’s CORBA
implementation, Orbix, allowed TASC to meet it’s
design goals for an industry standard API, internet
and intranet distributed access to the model
repository, and multi-user support. Orbix also
provided TASC with the language mapping required
to develop our architecture neutral GUI. Orbix has
a language mapping for Java.

Java is an object-oriented language developed by
Sun Microsystems. Java, similiar in syntax to
C++, is designed to be robust, architecture neutral,
portable, and multi-threaded. Java source code and
the compiled binary files are platform independent.
The source files are compiled into bytecodes, a set
of instructions generated according to a virtual
machine language specification. The same set of
generated bytecodes can be interpreted and executed
on almost every available platform and operating

system. The combination of Java and CORBA
provides users with a network accessible, platform
independent GUI.

Architecture/Features
The FDT architecture is separated into three
primary subsystems:

• Object Model Management System (OMMS)

• Java Graphical User Interface

• Extended Toolset

The OMMS is a CORBA accessible server that
manages access to the FOM and SOM repositories
and controls their creation, deletion, and
modification. The OMMS also supports versioning
of individual FOMs and SOMs and change
propagation. When object model elements are
modified, their relationships to other elements in
the object models are verified. The change
propagation layer ensures the integrity of the model
repository and notifies the user of any additional
changes that are made to other model elements to
maintain consistency. For example, if an object
class is deleted, all interactions, associations, and
compositions are checked for dependencies. If any
of these elements were using the deleted object
class, corrections are made and the user is notified
of the changes. Other OMMS features include
network accessibility and the separation of the
system interface and it’s implementation. The
OMMS is accessible from any machine on the
network, but the ability to launch or activate the
server is controlled based on unique user and group
identifiers. Since the API is written in IDL, future
changes in the OMMS are isolated from the users.
The implementation of certain services can be
modified or an ORDBMS or ODBMS can be added
without affecting the users or client tool
developers. This is extremely important when
considering code reuse and protecting tool
investment.

The Java GUI provides the user with the ability to
open, modify, and version FOMs and SOMs. The
GUI supports a a graphical representation of the
elements in the object model and displays a
comprehensive view of these elements. There are
numerous navigational capabilities with multiple
views into the object model. Views exist for the
top level object model, class structure, class
inheritance hierarchy, interactions, and the various
constructed data types (structures, enumerations,

and unions). The GUI provides services to aid the
user in building and maintaining large object
models. The top level view and tabbed panels
allows the user to easily navigate and display any
element in the object model. Most the views
support a control panel to index through all the
elements of the selected type. Users can also use
the inheritance view to navigate through the full
class inheritance hierarchy. One of the major
challenges in building a large object model is
tracking created attributes in the class inheritance
hierarchy. With larger models, duplicating
attributes can complicate the design process. The
FDT resolves this issue by displaying, for each
class, all the leaf node attributes and the inherited
attributes. For any of the leaf node attributes, the
user can also “promote” the attribute to a base
class.

The extended toolset presently includes three code
generators: an IDL/C++ code generator, a DIF
generator, and a RID generator. The IDL/C++ code
generator ensures consistency between the data
types generated in the object model and the
programming data types used in the simulation.
The DIF generator reads and writes object model
representations both from and into the OMT DIF.
Finally, the RID generator enforces consistency
between the RID file and the FOM.

AEGIS RESEARCH FDT
The Aegis FDT is a Microsoft Windows 95/NT
based application. The FDT is designed to be
intuitive to use for those experienced with the
Microsoft Office application suite. In addition to
providing an object model editing environment, the
FDT includes a built-in interface to the Modeling
and Simulation Resource Repository (MSRR), as
well as interfaces to commercial, off-the-shelf
(COTS) computer-aided software engineering
(CASE) tools.

Design
The FDT is developed in Visual C++, using the
Microsoft Foundation Class (MFC). This
development environment provides its own
methodology for the overall application framework,
and provides a rich set of software objects for
building highly standardized user interfaces. The
MFC is built around the abstract concepts of
documents and views. In spite of the simplified
name, a document is not necessarily a single file.
Although the abstraction allows a document to be a
simple text file, it could also represent a collection

of files, or even a database. The major design
elements of the AEgis FDT include:

 Multiple Document/Views : The FDT is built
around the MFC concept of a multiple document /
multiple view application. The contrast between
single document and multiple document
applications is evident in the differences between
the Windows Notepad application, a single
document application that requires you to close an
open file before opening another, and the Microsoft
Word application, which is a multiple document
application that can have many files open
simultaneously. For the FDT, this translates into
support for editing multiple FOMs and SOMs
simultaneously. The window title bars of the
various views indicate the object model's name, as
well as the view's name. The standard concepts of
Cut, Copy and Paste allow information to be
moved between the different object models.

The FDT also takes advantage of the MFC support
for the concept of multiple views into a document.
Again, to contrast between single and multiple
views consider two widely known commercial
applications: Microsoft Word, while supporting
multiple documents, is a single view application.
There is only one way of looking at the document.
Intuit's Quicken, however, supports multiple
views. It provides a variety of ways of looking at
and editing a bank account.

 Standardized User Interface : The FDT utilizes
several of the MFC standard menu and toolbar
items. The File, Edit and Window menu items
should be intuitive to navigate for anyone who is
comfortable with Windows or Macintosh
applications. The File menu provides support for
creating new object models, opening any of the
supported file formats (FDT, DIF, RID, etc.),
closing an object model, and saving modifications
to the object model. The print and print preview is
also available from this menu, as well as a
continuously updated list of the most recently
opened object models. The Edit menu provides the
Cut, Copy and Paste support. The Window menu
provides support for arranging opened windows, as
well as maintains a list of all open windows to
assist the user in finding a particular window when
many are opened. The standard toolbar shortcuts for
New, Open, Save and Print are available on the
FDT toolbar. The FDT also defines its own
extensions to this toolbar.

 Property Sheets : The FDT provides views for each
of the HLA OMT tables. The FDT relies heavily
on the Windows 95 style of right-mouse activated
menus. From the Class View window, for
example, the right mouse button menu provides
access to the property list of the selected class, as
well as commands for inserting new classes.
Opening the class property list allows the user to
modify the definition of the class, or to define the
properties of a new class. The tabbed index property
list contains property sheets for general
information, such as class name, glossary
definition and comments, as well as separate sheets
for class attributes and class components.
Modifying the properties of a class will update any
affected view of the object model.

 Reusable Components : In support of the overall
tool suite for HLA, the FDT provides two key
reusable software components: the DIF file parser
and the OMT Object Model class library. The FDT
reads the DIF and RID files via parsers developed
from using the UNIX standard lex and yacc
utilities. The lex utility uses an input specification
that describes the fundamental pieces of information
that exist in input files (tokens, in lex terms), and
generates C code for a lexical analyzer to break up
an input stream into tokens. The yacc utility uses
an input file that consists of grammar rules
describing patterns of the tokens that it should
parse, and generates C code for a parser. The lex
and yacc input specifications developed for the FDT
parsers are readily available for other tools in the
HLA tool suite that need to read these files. These
parsers have been tested on both UNIX and
Windows 95 platforms, and are independent of any
platform constraints. To aid developers who are not
proficient in lex/yacc parsers, the yacc parser makes
callbacks to a set of C functions as input patterns
are recognized. These C functions can be modified
and used to construct representations of object
models in any C or C++ application.

The AEgis FDT is built on a configuration of
several object libraries. One of these, the OMT
Object Model class library, maintains an in-
memory representation of the object models being
edited (i.e. FOMs, SOMs). To support the FDT
and potentially other HLA tools, this in-memory
representation has been developed as a Dynamic
Link Library (DLL). This library contains an
"Object Model" class definition, as well as all the
necessary supporting classes (Class, Interaction,

Data Type, etc.) needed to represent an HLA object
model in memory. These classes define a useful set
of methods for searching, traversing, manipulating,
and reading and writing HLA object models. These
C++ classes have been designed to function
independently from the platform-dependent user-
interface code of the FDT application to maximize
the potential for reusing these software components
in other HLA tools.

Features
The following provides a summary of the major
features currently supported by the AEgis FDT:

 MSRR Interface : The FDT uses the Microsoft
ActiveX control for importing remote FOMs and
SOMs to the local workstation from the http-
accessible MSRR. The MSRR contains archives of
FOMs and SOMs to allow new federations to
leverage off the engineering investment of previous
federations. The ActiveX software object essentially
provides the user with a mini web browser from
within the FDT. The imported files are transferred
across the http interface as an HLA Data
Interchange Format (DIF) file.

 Format Translation : The FDT File menu’s
“Open…” command presents the user with the
standard File Browser Dialog common to Windows
95 applications. The FDT File Browser will
support several file types. The default, of course, is
the native FDT file type. The “File types” popup
control allows the user to open DIF files as well.
When an object model is loaded from an imported
DIF file, modifications will be saved back to the
DIF file by default, but the “Save As…” feature
allows the file to be translated to the native FDT
format as well.

In a similar manner, object models created in the
native FDT file format can be translated to a DIF
file. The “Save As…” menu option under the File
menu allows the file to be saved as FDT or DIF. It
should be noted that this transfer between FDT and
DIF file should be used with care. The native FDT
file format is essentially “owned” by the FDT, and
may contain information extensions not supported
by the DIF. These extensions would essentially be
lost in the translation to DIF.

Another file type that can be written is the RTI
Initialization Data (RID) file. The RID is the
subset of the FOM data actually used by the RTI

during runtime. Just as the DIF contains a subset
of the information of the native FDT file, the RID
is a subset of the DIF. And although translation to
the RID format results in a significant loss of
information from the native FDT format, the FDT
can open a RID file as an object model
specification.

 CASE Tools : The FDT attempts to bridge the gap
between the HLA OMT and true object-oriented
modeling tools by supporting the interchange of
information with commercial off-the-shelf (COTS)
object-oriented design (OOD) CASE tools. The
FDT connects directly to Object Server database of
Paradigm Plus for importing an object model
definition into the FDT. Also, the FDT installation
package includes a Rose script file that allows HLA
specific information to be attached directly to a
Rose model. With this script extension, much of
the HLA OMT specification can be captured
directly within the Rose object model.

 Help System : The FDT implements the advanced
help system expected of Windows 95 based
applications. A variety of help subsystems are
available, including the Windows 95 concept of
electronic books. The FDT contains access to three
volumes of documentation: The FDT User’s Guide,
FDT Reference Manual, and the HLA OMT
Documentation.

The User's Guide describes a walk through of the
definition of an object model using the FDT. It
introduces FDT-specific terms and concepts as they
are needed, and contains references as hypertext
links to the other electronic volumes when
appropriate. The FDT reference manual provides
definitions of FDT specific terms and concepts. The
HLA OMT document is included to provide the
user rationale and context for the FDT.

In addition to the electronic books, all graphical
controls within the FDT have context-sensitive
help. These pop-up descriptions of control use and
effect generally include hypertext links to related
information in the electronic books. A help index
contains an alphabetical index of FDT terms and
commands, and keyword searches can be made of all
the electronic books available, or selected subsets
of them.

 Printing : The FDT supports printing the object
model views. Since each FDT view corresponds to

one of the HLA OMT tables, the FDT essentially
prints in the HLA OMT format. The print dialog
allows the user to choose between printing the
currently selected view, or all views for the
currently active object model. The Print Preview
menu option allows the user to adjust scaling and
margin information.

 Portability : The Visual C++ development
environment contains several paths for application
portability. Both Visual C++ and the MFC are
available for the Macintosh System 7 operating
system. Some slight modifications are generally
necessary to the application's Help file specification
and resource definitions to port the code from
Windows to the Macintosh, but this is a trivial
effort compared to the overall development of the
tool.

A variety of options exist for porting from
Windows to a UNIX platform. Motif-based
implementations of the MFC are available for
porting the application to a true UNIX application.
Alternatively, various Windows emulators exist
that allow the binary image to run directly without
porting.

SUMMARY
It is currently envisioned that it is through the
introduction of automated toolsets (like those
discussed above) that the HLA will evolve to be a
viable and desireable paradigm for development of
large exercises. The significant gains in efficiency
(and corresponding reductions in resource
requirements) achievable through automation is
expected to stimulate a widespread commercial
marketplace for HLA toolsets. Not only will this
proliferation of tools continue to simplify and
streamline the process by which HLA federations
are built and executed, but will also simplify the
process by which new organizations may join and
participate in HLA federations.

These two proof-of-principle efforts provide an
initial demonstration of the types of capabilities
which are possible to develop to support the HLA
FOM development process. It is believed that
these initial FDTs provide an adequate baseline
capability which can be leveraged by either
government agencies and/or commercial firms to
develop a more complete set of FOM development
support capabilities based on user needs. It is also
hoped that this initial demonstration of potential

capabilities provides a stimulus for organizations to
begin designing, developing, and experimenting
with other aspects of HLA automation, such as
conceptual modeling and execution support. The
long-term acceptance and success of the HLA will
be highly dependent on this automation.

REFERENCES
All references are available for download via the
home page of the Defense Modeling and
Simulation Office, site address
http://www.dmso.mil.

[1] Under Secretary of Defense for Acquisition
and Technology, “Department of Defense Modeling
and Simulation Master Plan, DoD 5000.59-P,”
October 1995.

[2] Defense Modeling and Simulation Office,
“HLA Federation Development and Execution
Process Model, Version 1.0,” August 1996.

[3] Defense Modeling and Simulation Office,
“HLA Object Model Template, Version 1.0,”
August 1996.

